Потърси помощ за своята домашна
Програма Добавете учебите си часове за седмицата.
Как ще се измени обемът на кълбо,ако радиусът му: А) се намали 3 пъти Б) се увеличи 2 пъти
1
Йордан Николов Попитан на 13 юни 2024 г. в 17:17
Въпрос
Как ще се измени обемът на кълбо,ако радиусът му: А) се намали 3 пъти Б) се увеличи 2 пъти
- Математика
Отговор
За да разберем как ще се измени обемът на кълбо при промяна на радиуса му, трябва първо да разгледаме формулата за обем на кълбо. Обемът \(V\) на кълбо с радиус \(r\) се изчислява по следната формула:
\[ V = \frac{4}{3} \pi r^3 \]
Сега ще разгледаме двата случая, които са дадени в задачата.
### А) Радиусът се намали 3 пъти
Ако радиусът се намали 3 пъти, новият радиус ще бъде \(\frac{r}{3}\). Нека изчислим новия обем \(V'\) с този нов радиус:
\[ V' = \frac{4}{3} \pi \left(\frac{r}{3}\right)^3 \]
Изчисляваме степенуването:
\[ \left(\frac{r}{3}\right)^3 = \frac{r^3}{27} \]
Сега заместваме в основната формула:
\[ V' = \frac{4}{3} \pi \cdot \frac{r^3}{27} = \frac{4}{3} \pi \cdot \frac{1}{27} \cdot r^3 = \frac{4}{81} \pi r^3 \]
Следователно, новият обем \(V'\) ще бъде:
\[ V' = \frac{1}{27} V \]
Това означава, че обемът на кълбото ще се намали 27 пъти, ако радиусът му се намали 3 пъти.
### Б) Радиусът се увеличи 2 пъти
Ако радиусът се увеличи 2 пъти, новият радиус ще бъде \(2r\). Нека изчислим новия обем \(V''\) с този нов радиус:
\[ V'' = \frac{4}{3} \pi (2r)^3 \]
Изчисляваме степенуването:
\[ (2r)^3 = 8r^3 \]
Сега заместваме в основната формула:
\[ V'' = \frac{4}{3} \pi \cdot 8r^3 = \frac{4 \cdot 8}{3} \pi r^3 = \frac{32}{3} \pi r^3 \]
Следователно, новият обем \(V''\) ще бъде:
\[ V'' = 8V \]
Това означава, че обемът на кълбото ще се увеличи 8 пъти, ако радиусът му се увеличи 2 пъти.
### Заключение
- Ако радиусът на кълбо се намали 3 пъти, обемът му ще се намали 27 пъти.
- Ако радиусът на кълбо се увеличи 2 пъти, обемът му ще се увеличи 8 пъти.
Тези резултати следват от кубичната зависимост на обема от радиуса в формулата за обем на кълбо.